A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods.

نویسندگان

  • Marko Novinec
  • Matevž Korenč
  • Amedeo Caflisch
  • Rama Ranganathan
  • Brigita Lenarčič
  • Antonio Baici
چکیده

Allosteric modifiers have the potential to fine-tune enzyme activity. Therefore, targeting allosteric sites is gaining increasing recognition as a strategy in drug design. Here we report the use of computational methods for the discovery of the first small-molecule allosteric inhibitor of the collagenolytic cysteine peptidase cathepsin K, a major target for the treatment of osteoporosis. The molecule NSC13345 is identified by high-throughput docking of compound libraries to surface sites on the peptidase that are connected to the active site by an evolutionarily conserved network of residues (protein sector). The crystal structure of the complex shows that NSC13345 binds to a novel allosteric site on cathepsin K. The compound acts as a hyperbolic mixed modifier in the presence of a synthetic substrate, it completely inhibits collagen degradation and has good selectivity for cathepsin K over related enzymes. Altogether, these properties qualify our methodology and NSC13345 as promising candidates for allosteric drug design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the Activity Modification Space of the Cysteine Peptidase Cathepsin K with Novel Allosteric Modifiers

Targeting allosteric sites is gaining increasing recognition as a strategy for modulating the activity of enzymes, especially in drug design. Here we investigate the mechanisms of allosteric regulation of cathepsin K as a representative of cysteine cathepsins and a promising drug target for the treatment of osteoporosis. Eight novel modifiers are identified by computational targeting of predict...

متن کامل

Computational investigation of conformational variability and allostery in cathepsin K and other related peptidases

Allosteric targeting is progressively gaining ground as a strategy in drug design. Its success, however, depends on our knowledge of the investigated system. In the case of the papain-like cysteine peptidase cathepsin K, a major obstacle in our understanding of allostery is represented by the lack of observable conformational change at the active site. This makes it difficult to understand how ...

متن کامل

Characterization of novel cathepsin K mutations in the pro and mature polypeptide regions causing pycnodysostosis.

Cathepsin K, a lysosomal cysteine protease critical for bone remodeling by osteoclasts, was recently identified as the deficient enzyme causing pycnodysostosis, an autosomal recessive osteosclerotic skeletal dysplasia. To investigate the nature of molecular lesions causing this disease, mutations in the cathepsin K gene from eight families were determined, identifying seven novel mutations (K52...

متن کامل

The collagenolytic activity of cathepsin K is unique among mammalian proteinases.

Type I collagen fibers account for 90% of the organic matrix of bone. The degradation of this collagen is a major event during bone resorption, but its mechanism is unknown. A series of data obtained in biological models strongly suggests that the recently discovered cysteine proteinase cathepsin K plays a key role in bone resorption. Little is known, however, about the actual action of catheps...

متن کامل

Regulation of Elastinolytic Cysteine Proteinase Activity in Normal and Cathepsin K–Deficient Human Macrophages

Human macrophages mediate the dissolution of elastic lamina by mobilizing tissue-destructive cysteine proteinases. While macrophage-mediated elastin degradation has been linked to the expression of cathepsins L and S, these cells also express cathepsin K, a new member of the cysteine proteinase family whose elastinolytic potential exceeds that of all known elastases. To determine the relative r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014